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ABSTRACT 

For high frequency monochromatic waves the geometrical theory 

of diffraction can be used for predicting radar scattering.  For 

typical targets the strongest returns, due to speculars, occur only 

at special aspect angles. At most aspect angles the dominant returns 

are usually due to diffraction by the "edges" of the target. 

The proposed use of short pulse radars requires the consideration 

of scattering by non-monochromatic signals.  The progressing wave 

formalism is a generalization of the geometrical theory of diffraction 

suitable for treating pulses for which the high frequencies predominate. 

This paper extends the earlier work on specular scattering of 

progressing waves to include scattering by edges.  For a moving 

target, partial results are obtained. 

in 
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SECTION I 

INTRODUCTION 

The "geometrical theory of diffraction"' '   is useful for the 

solution of problems of scattering of time-harmonic waves at high 

frequencies.  A recent generalization of that theory, the "progressing 

[2] 
wave formalism"    is suitable for scattering of pulses of arbitrary 

form by fixed or moving objects.  In both theories the largest returns 

(specular returns) are due to reflected waves, buL for typical objects 

specular returns occur only at special aspect angles, and at other 

angles the main returns are usually due to diffraction by edges. 

The purpose of this paper is to derive the formulas for the 

diffracted progressing wave produced by an arbitrary edge. The 

reflected wave is discussed in L2J.  The theory is based on the 

scalar wave equation, but the generalization to the electromagnetic 

case should be straight-forward (see [3j and L^J) .  In Section II 

we discuss the progressing wave formalism lor the wave equation. 

This discussion is a simplified and improved version of the basic 

theory presented in [2j. The use of analytical formulas (involving 

jacobians) rather than geometrical formulas (involving area ratios) 

for the amplitude coefficients is a great convenience. An improvement 

in the theory is also achieved by the use of finite part integrals, 

which were recently exploited.  In Section III we derive the 

formulas for the diffracted wave.  The method used relies heavily 



on the geometrical theory of diffraction, but there are several new 

features that do not appear in the time-harmonic case. A special 

case of the formula derived was obtained earlier in [5], but there 

only "time-independent" progressing waves (see Section II) were 

treated and the discussion was restricted to the two-dimensional case. 

In Section IV we obtain partial results for diffraction by a moving 

edge.  (A complete theory would require the solution of a non-trivial 

"canonical problem"). These results show some interesting new feature 

involving the direction of the diffracted ray and a "Doppler shift" 

in the instantaneous frequency. The appendix contains a discussion 

of the fractional integration operator, which is essential to the 

theory of edge diffraction. 



SECTION II 

THE PROGRESSING WAVE FORMALISM 

Let 

v(t, x) = e   u(x) (1) 

be a solution of the wave equation 

Lv = vx x " -T7T vtt = ° (2) 

V V   c (x) 

Here mi is a constant and the repeated index v is summed from 1 to 3. 

By inserting (1) in (2) we find that u satisfies the reduced wave 

equation (for simplicity we take c to be constant) 

u    + k2u = 0,  k = - (3) 

Contemporary generalizations of geometrical optics are often based 

on asymptotic solutions of (3) of the form 

u(x)~eiks(-}  x'  (ik)"m2 (x) , k-- (» 
— Ld m - m 

m=0 



If we insert (4) into (1), multiply by an arbitrary function a(uu), 

and integrate with respect to 0), we obtain a formal solution of (2) of 

the form 

s(x)-!_(m) 
m 

m=0 

v(t, x) - )   e  [t - 12i3iW(x) .        (5) —    <_, m      c       — 

Here 

z<
m>(x) = C-c)mzm(x) (6) 

and 

e 
m (t) = J a(u0(-iuu)~me"ia,tduu  . (7) 

We note that the functions e (t) are successive anti-derivatives, i.e., 
m 

e (t) = e  (t) . (8) 
m      m- i 

A solution of (2) of the form (5) is called a time-independent 

progressing wave, provided (8) is satisfied.  Since (4) is valid for 

large k = JL)/c, it is clear that (5) is valid provided the spectrum 

a(uu) contains only high frequencies, or at least a(uu) is small except 

for large uu. This provides an interpretation of the formal expansions 

we shall construct. Other interpretations are discussed in [2] . 

We now generalize (5). A (general) progressing wave solution 

of (2) is given by an expansion of the form 



v(t, x) - ^em t0(t, x)] z(m)(t, x)       (9) 

m=0 

provided (8) is satisfied. The function e (t) is called the wave-form 

and is essentially arbitary. We assume that all of the e (t) vanish 
m 

at t = -00.  Then the successive e (t) are determined uniquely by (8) . 

In order to determine the phase function 0(t, x) and the 

amplitude functions z  (t, x), we insert (9) into (2) and use (8), 

This yields the characteristic equation 

0 0  - -5  $}  = 0 (10) 
x. x,   2,  v  t v v  c (x) 

and the transport equations 

o C*    (m) 1 /*  (m) "1   (m)-rM    T (m-1) 2 L0 z - — 0,z N 'J + zN 'W  = - Lzv    , 
x x 2 t t                      ' 
v v c 

m = 0, 1, 2,...  ' z(_1) = o . (11) 

We introduce the functions 

U> = = - 0t(t, x),  ^ = 0x (t, x) (12) 



and   set 

k - (ki5 k2, k3),    k «Vk
v
kv    * (l3) 

Then  (10)   takes  the  form 

2 2  2 
0)    =  c  k (14) 

or 

U) = h(k,   x)   = ± c(x)k     . (15) 

The first, order partial differential equation (15) can be 

solved by the method of characteristics. We introduce the character- 

istic equations (Hamilton's equation) 

whe re £ =  (g(,  g2,  g~)   is  the group velocity vector given by 

By " §T-   • * ck
v
/k " c\/ou  (V • 1, 2,  3)   . (17) 

>kv 

A solution x(t") , k(t) of the system of ordinary differential equations 

(lb) determines a curve x * x(t) in x-space called a ray.  This ra ' 

is the projection onto x-space Df the space-time curve [t, xCOJ. 

The latter is called a characteristic curve of (10) , or bicharacteristic 

of (2). We note that 



u> = dh/3kv kv + dh/dxv x = 0 (18) 

and 

i  = 0t + 0x xv = - uu + kvgv = i (c
2k2 - uu2) - 0 ,   (19) 

i.e. 0) and 0 are constant on bicharacteristics. Thus the bicharacter- 

istics lie on level surfaces of 0(t, x) .  These level surfaces are 

called characteristic hypersurfaces of (2) .  If the value of 0 is 

prescribed on some hypersurface or lower dimensional manifold M, the 

values of u), and k can then be obtained by differentiation along M. 

Then the bicharacteristics emanating from M can be obtained by solving 

the initial value problem for (16), and from (19) the value of 0 on 

each bicharacteristic is equal to its value on M. This procedure for 

determining the value of 0(t, x) will be illustrated in Sections III 

and IV.  It is also discussed in detail in [2], 

In order to determine the function z   we write (11) in the 

form 

(20) 

2 2 
(m)    c    (m-1) 

2o) 

Thus we see that the transport equations are in fact first order linear 

ordinary differential equations along the bicharacteristics. A brief 

( ml 
digression is now required in order to obtain the solutions z 



in a convenient form. Let us assume that we have a 3-parameter 

family of bicharacteristics [t, x(t, a)] where a - (a., &„,  a.) is 

the parameter vector (e.g. O  might be the parameter vector in a parametric 

representation of the hypersurface M). We introduce the jacobian 

r dx       -i  d(x  x  x ) 
(21) 

and observe that 

_ dx     ox. 

i  *T cof SET " J6ik • <22> 
v«l 

Here 6  is the Kronecker symbol and "cof" denotes the cofactor.  If 

i • k (22) follows from the rule for the expansion of a determinant 

by cofactors.  If i ^ k, it follows from the fact that a determinant 

with two identical rows vanishes.  By differentiating the determinant 

we find that 

,.       - dx. ^    dx.  ^-,  r ^ dx.-. dx     dx    ^ dg 

dt-ZdAdT;>of 55T - L   Ldx7 drJ bT cof S5T - j L ST    « 
i,v i,v,k i 

(23) 

Here we have used (22) and (16). We now set f^ • (f., f2, f_) wher.» 

f. « k./0) - g./c2 , i - 1, 2, 3 .     (24) 



Since  uu  - - 0t  = - (k.)  , VU> - - k   hence 
xi     txi     i t ' 

kt-k = | (k2)t - \ (U)2/c2)t  - c"2UU)t (25) 

Therefore 

7.f »-U-\ VUJ.k = J V.k + Kj k  -k 
-     »     -    u)2       "     w     "     uu     fc 

aIrvk + — UJ ] - - [0     - — 0  3--L0. 
Ul L7^ +    2 V       «)  LVv    c2     " * (26) 

It  follows  from (23)   that 

d_ 
dt log hi = * ^ = v-& = v-(c2D • °2 *-i+I-7c' 

^ 10 + ±5- £.7c2 (27) 
It) 2 a 

We now see from (16) that 

C C 

(28) 

where 

y - |j|%/c . (29) 



By inserting (28) into (20) we obtain 

d    r     (m)l rdz(m)       1 dy     (m)-| fdz0*0   L fc
2 _M\  (m)l 

dTLyz    J-yLdT—+y"dtz    J-H-dT- + ^^>    J 

A U(«-D (30) 

This equation can now be integrated to yield z       (t)  in the  form 

t 

y(t)z(m)(t)  = y(tl)z
(m)(tl)   - |-   J cW^df   . 

i I        40   « (31) 

1 

Here we have not indicated explicitly the dependence on the parameters 

O. Thus, e.g. z^(t) - z^m) [t, x(t, a)] is the value at time t of 

z   on the bicharacteristic Ct, x(fc> ?)^• 

If j(t) vanishes at t • t , the space-time point [t , x (t , a)] 

(m) 
is called a caustic point. Then y(t ) vanishes and z  (t ) becomes 

infinite.  If t • t. is a caustic point (31) is not valid because 

z^  (t,) is infinite and, in general, the integral diverges.  In 

order to obtain a valid formula for this case, we first define the 

"finite part" of a function. For t>t  let f(t) have an asymptotic 

expansion in powers (perhaps fractional) of (t-t ) as t "• t .  Let 

£m(t)  denote the singular terms [negative powers of (t-t )] in this 

expansion. We define the finite part of f(t) as f t by 

fin  f(t) - lim  [f(t> - fw(t)] (32) 
t •*  t„     t -* t„ o o 

10 



if    g(x)dx is divergent or convergent at x • t we define the 

a 

Now 

t 
o 

finite part of the integral as 

^g(x)dx = fin    J g(x)dx . (33) 
t - t 

t o t 
o 

We now set 

r(">)   *• M   <*>f^       *• lj(t)|Vm)(t)      ,,,,. C   = fin  y(t)zs  (t) = fin ' JV>  ' (t) *-*-  , (34) 
t - t t - t 

o o 

and take the finite part as t. ~*  t of (31). This yields 

t 

y(t)z(m)(t) = C(m) - |j ^c2yte<i,rl)df , (35) 

t 

or 

w(e) . p=M . i_ ^c(e)c(t.) |J^|
4
lt(-l)(t.)dt. 

m = 0, 1, 2, ...; z(_1) • 0 

(36) 

If t • t is not a caustic point j(t) and z  (t) are continuous 

there. Then (34) yields C(m) - y(t )z^m)(t ) and the finite part 

integral becomes an ordinary integral.  In this case (35) or (36) 

reduces to (31) with t, replaced by t . 

11 



In (36) c(t) - c[x (t, 0)1.    For the special case of a homogeneous 

medium c is constant and (36) becomes 

o 

m = 0, 1, 2,... ; z(_1) 2 0 . 

(37) 

Here 

6(m) = fin  |j(t)|Vm)(t)  . (38) 
t - t 

When c is constant we see from (16) that k is constant on a bicharacter- 

istic and from (17) that £ has the constant value 

g = c u 

where u is the unit vector 

u=jk . (40) 

Then the first equation (16) can be integrated to yield the explicit 

ray formula 

x * x(t, o) • ^(a) + c[t-to(a)]u(a) .       (41) 

The bicharacteristic [t, x(t, a)] is now a straight line in space 

time.  It passes through the point [t (O) , x (O)] . 

12 



SECTION III 

DIFFRACTION BY EDGES 

Let 

v (t, x) = Y e (0)z(m) (42) 
o   —    i_i  m 

m=0 

be a progressing wave solution of (2) with constant c.  Let S be a 

boundary surface in x-space, such as the surface of a fixed scattering 

obstacle.  In space-time the boundary is a hyper-cylinder S with 

generators parallel to the t-axis. The projection of S on x-space 

is S. If the bicharacteristics of (42) intersects, a reflected 

progressing wave is produced.  Such problems are discussed in detail 

in L2].  In an important special case the incident wave is a plane 

wave 

v0(t, x) = eQ(t - xl/c) (43) 

where e is an arbitrary function. Then (43) is not only a special 

case of (42), but is in fact an exact solution of (2). 

An edge E is a curve along which S fails to be smooth. Examples 

are the edge of a screen or the edge of a finite cylinder or other 

object which is locally wedge-shaped.  If S contains an edge, we 

assume that in addition to the incident and reflected waves the 

solution contains a third term, the diffracted progressing wave 

13 



v(t, x) - > « (0)zW . (44) 
—     Li  H 

m-0 

A 
We assume that the phase function 0 of the diffracted wave is equal 

to the phase function 0 of the incident wave on E.  Let T) be an arc- 

length parameter and x « x (rj) the parametric equation of E. Then 

0[t, x (r))] - 0[t, x (TI)] (45) 
' —o —o 

By differentiating (45) with respect to t and r\  we obtain 

and 

U) « (1) on E , (46) 

A 
k.t, - k.t  on E . (47) 

A      A   A     A 
Here ID » - 0 , k • V0, and t, * dx /dri is the unit tangent vector to 

t - —1   —o 

E.  In terras of the unit vectors u • — k and u • y k, which point in 

the direction* of tha incident and diffracted ray*, (46) and (47) yield 

u.t1 - cos 0 (48) 

where 0 • |3(t, r\)  is the angle between the incident ray and the 

edge, i.«. 

co* 0 - u.t. (49) 

14 



This is the familiar law of edge diffraction (see [l]).  If we 

introduce the unit normal and binormal vectors n and b of E we see 

from (48) that 

u = u(t, T), a) = cos 0t, + sin 0 cos an + sin P sin a b_ . 

(50) 

This equation defines the angle a.  In order to satisfy (45) we find 

that at each time t = T a one parameter family of diffracted bi- 

characteristics emanates from each point x (r|) of E. The corresponding 

rays are given by 

x - x(t, T, "n, a) - x (n) + cLt - T] U(T, TI, a), 03x<2rr  ,       (51) 

They generate a cone with vertex at x and semiangle 8. Equation (51) 

is a special case of (41) with parameters 

(ar a2, a3) - (T, r\, a)  . (52) 

From (18),   (19),  and (40) we find that on the bicharacteristic 

(51), 

«U - UU[T,  x   (n)] (53) 

0 = 0[T,  x  (r\)1 (54) 

15 



and 
A 

A   m A 
k - ~ U(T, TI, a) . (55) 

In order to use (37) to determine the amplitude coefficients 

we must compute the jacobian 

j(t) - J(t, T, n, a) - d(xl' V x3)      (56) 
* (T , TI , a) 

from (51). In so doing we make use of the Frenet equations, 

t,1 - Xn , n1 - - Kt. + T b , b' - - T n ; • - ~ .      (57) 1    — ' —     —1   o—  —     o—      dT| 

Here •» and T  are the curvature and torsion of the curve E. A 
o 

straight-forward computation yields 

j(t) - cOsin20 (1 + |) - c2sin2p (t - T) [l + c^ ~ T>],  (58) 

where 

a - c(t - T) (59) 

is the distance along a diffracted ray from the edge, 

- sin P 
P-   ' js     , e'- 3ft(T,TT-), e - eT (T,n), 

0'sin0 + — sinBcos3 + Kcos6 
c 

(60) 

16 



and 

A 

cos6  =  sinf3cos(X = u.n     . (61) 

From (37) with m = 0, and from (58) we now see that 

z(0)(t) = Y(0)(T, ii, a) |a(l + |)|'% , a = c(t - T) .     (62) 

Here we have set 

„(0)     6(0) 

c sinf3 
(63) 

Thus in order to obtain the leading term, 

A A  * A(Q\ 
v(t, x) ~ e (0)zv ' , (64) 

A 
of the diffracted wave it remains to determine the functions e (t) 

o 
(0) A(0) 

and Y   (T, r\,  a).  We assume that the amplitude z   of the diffracted 

wave is proportional to the amplitude z   of the incident wave at 

the (space-time) point of diffraction. Thus we set 

Y
(0)

(T, n, a) = D z(0)[T, x (Tl)] . (65) 

Here the diffraction coefficient D  is to be determined.   o 

17 



The value of D depends on the boundary condition at S and on 

the local geometry at the edge. We consider the two boundary 

conditions , 

(A)  v = 0 ,        (B)  |^ = 0       on S (66) 

dv 
Here ^— denotes the normal derivative. The local geometry is 

illustrated in Figure 1. The plane of the figure is orthogonal to 

the edge and the unit tangent vector ;t, points into the plane. The 

projections of the incident and diffracted rays onto the plane of the 

figure are shown. Y is the local wedge angle which is bounded by 

the tangents to S at E. The angles 6 and 0. are simply related as 

shown in the figure, i.e. 

9 = ¥ - a (67) 

where ¥ • Y(T]) is the angle between the unit normal vector n and the 

vector t    which is orthogonal to one tangent plane of S at x (r\) . 

A 
In order to compute e and D we begin with an incident wave 

of the form given by (1) and (4).  Then 

l[ks(x)-U)t]  \  /.,\""m  / \    i    ,., / rcu\ v ~ e    —      > (ik)  z (x) ,  k * UJ/c , (68) 
o Lt m — 

m-0 

18 
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Figure I.   Rays of Edge Diffraction 
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and according to the geometrical theory of diffracction 

the diffracted wave is given by 

v~ (k)-%e
iCk*8<2)-(Mt] Y(ik)-mAZ (x) . (69) 

i_>      m - 
m=0 

The leading term is given by 

Azo = ein/4Dzo[xo(^)]   |c(l + *)   \"k     , (70, 

where 

/rr/ N rl                        9-9    \ -1 I        „              9+0 +n\"^ sin(n/q) f         n             o       T TT                  o       I 
D =  T *—       Icos — -  cos   I     +   Icos — -  cos   

(2n)^asinP L\   q      q  ' I   q       q   N 

(71) 

Y Here q = 2 - — and p is given by (60) with 0=0. The upper or 

lower sign in (71) holds for the boundary condition (66) (A) or (B). 

We now set 

uu = bv ,       0 = b(t - s/c) ,    0 = b(t - s/c) 

(72) 

where   b    is  a  constant.    Then k = bv/c and we may  re-write  (68)  and 

(69)   in the  form 

00 

m=0 

v    -e"1^    >   (-iv)"m   zW,     zKWJ   =  (-f)mz   (x)   ; (73) o i_, bm — 

20 



and 

CJ D     m — m 
m=0 (74) 

Here (-iv)  denotes the principal value, i.e. (-iv)  * V e 

We now multiply the incident and diffracted waves (73) and (74) by 

an arbitrary function a(v) and integrate with respect to V. Then 

they become 

v (t, x) ~ 7 e (0)Z
(m) (75) 

o   —    La   m 
m=0 

and 

A r1     A A (m\ 
v(t,x)~ 2-enH-%(0)z (76) 

m=0 

where 

e (t) = J (-iV)"ra(v)e"lVtdV  .        (77) 

We note that (77) holds for both integral and fractional values of r, 

Thus (see the Appendix) for all r 

er(t) = IreQ(t) (78) 

where I is the fractional integral operator of order r, 

21 



By comparing (42) and (44) with (75) and (76) we conclude 

that in general 

*m(t) = Wt} * (79) 

We also insert (65) into (62) and compare the result with the 

A (o) 
expression for zs  '   obtained by inserting (70) into (74).  Since 

z^ ' = z we conclude that 
o 

Do • (f^D = (|-^D  • (80) 

Summarizing our results we conclude that the leading term of 

the diffracted progressing wave is given by 

- e,.(0) £-)W0)
[T, x (n)] |o(l + ^)|'% ,      (81) 

V K(t> 

where O = c(t - T), p is given by (60) and D = D(T, r\,  a) is given 

A 
by (71) and (67).  Thus v(t, x) is given parametrically with parameters 

(T, r\,  a) by (81) and (51). 

22 



SECTION IV 

DIFFRACTION BY MOVING EDGES 

The progressing wave formalism can be applied to problems of 

scattering by moving as well as fixed obstacles. The interesting 

problem of reflection of a progressing wave by a moving surface is 

discussed in [2J. There it was found that the usual law of reflection 

is modified, and a Doppler shift of the instantaneous frequency is 

introduced. It is also interesting to note that if a time-independent 

progressing wave such as (5) or (43) is scattered by a moving 

surface the reflected wave is, in general, not time-independent.  In 

problems involving moving sources [2, 3, 4] general (i.e. not time- 

independent) progressing waves also arise naturally. 

In this section we give a partial treatment of diffraction of 

a progressing wave by a moving edge such as the edge of a finite 

cylinder which is undergoing translation and rotation. As in the 

geometrical theory of diffraction, a full treatment would require 

the solution of a "canonical problem", involving a moving infinite 

wedge. However, considerable information can be obtained without 

solving that problem. 

Let r\  be an arclength parameter on the edge E and let 

x = 1.(11, t) (82) 
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be the parametric equation of E at time t. Then t, - ^  is the 

instantaneous unit tangent vector to E. We introduce the vector 

S-lt - it'^1 * (83) 

For any function T|(t) the point 

x = x(t) • 5.CTICO , t] (84) 

it  constrained to remain on the moving edge. Its velocity is 

X *° T\t + 5. , and the normal component of its velocity is 

2S " i-1^ - T£x  + ^ - TJt 1  - l^t^ -  W.        (85) 

Therefore we refer to w as the normal velocity vector of E and to 

its magnitude w = |w| as the normal speed. 

A 
As in Section III we assume that the phase function 0 of the 

diffracted wave (44) is equal to the phase function 0 of the 

incident wave (42) on E.  Thus 

0[t, £(n, t)l - 0[t, i(ri, t>] , (86) 
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and differentiation with respect to t and "n yields 

UU + k-5 • - U) + k.§    on E, (87) 

k.tx - k.^ on E (88) 

If we multiply (88) by - (5«t,) and add the result to (87) we obtain 

A A 
- U) + k.w =  - uu + k.w on E   . (89) 

A c   A 
In terms of the unit vectors  u = — k and u • j- k   , (88) and (89) 

become 

AA 
UJu.t     =  (JUu- tl on E   , (90) 

U)[l  - - u.w] = uu[l  - - u.w]       on E, 
c — 

(91) 

and  it  follows  that 

A 

 IL£l  
i       I11 
1  - — u.w 

c  

iL-Ll 

1  - — u.w 
c  

on E (92) 
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We now introduce the unit vectors N = — w , and B » t,X N . 
—  w —     —  —1 — 

Then t., N, B form an orthonormal system but N and B are not the 

normal and binormal vectors in general. We also introduce the angles 
A    A 

3s 3, e, e defined by 

u = cos 3 t. + sin 3 cos e N + sin 3 sin £ B ,     (93) 

A       A A     A A     A 
u = cos 3 t, + sin 3 cos e N + sin 3 sin C B .     (94) 

Then (92) becomes 

A 
 cos 3   cos 3  

W      ft      * Wo 1 - — sin p cos e 1 - — sin p cos C 
(95) 

This equation may be called the law of diffraction for moving edges. 

It reduces to the more familiar form (49) when w = 0.  In general, 

A A 
for given 3,6, and w (95) determines 3 as a function of C (or vice- 

A 
versa), hence a one-parameter family of directions u for the diffracted 

rays emanating from E.  Furthermore(90) and (91) yield 

U) = JLAU (96) 

where 

sf- 
1 • 

1 
c 

u-w 
cos 3 

1        A 
cos 3 

1 • 
w 
c 

sin 3 cos C 

1 • 
1 
c 

A 
u.w 1 • 

w 
c 

A 
sin 3 

A 
cos e 

(97) 
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A 
Since U) and UJ are proportional to the "instantaneous frequencies" of 

the incident and diffracted waves (see [2, 3, 4]), the factor JTmay 

be viewed as determining a "Doppler shift". When w • 0 we see that 

It is interesting to note that back-scattering from the edge 

A 
occurs when u • - u.  In this case we see from (90) and (91) that 

(0) + uu) u.t =0       on E ,      (98) 

and 
,   1 

A      1 - — U.W 
U) = UU  1         on E .      (99) 

1 + — u.w 
c  

Since w = |w| < c we see from (99) that UJ and U) have the same sign, 

hence from (98) that 

u.t = 0 (100) 

Thus, even for a moving edge, back-scattering occurs if and only if 

the edge is orthogonal to the incident ray. 
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APPENDIX 

FRACTIONAL INTEGRALS AND FOURIER TRANSFORMS 

For a >  0 we consider a class C    of functions f(t) which vanish — a 

for t less than some real number t and for which f(t)|£c e ' for o ' •     o 

sufficiently  large positive t.    Then the Fourier transform 

a(U>)   = ~   J   eiUJtf(t)dt (101) 

is analytic in I uu > a, and 3 m 

a(UU)e L dcu . (102) 

Here and hereafter the path of integration in the uu-plane is parallel 

to the real axis but lies in the region I U) > <J ^ 0. We introduce 
m 

the   linear operator 

I  f(t)  = (-iw)"m a(ou)e_1 fcduu   , m * 0  . (103) m o 

I will be called the fractional integral of order m.  If m is not 
tn  "  

an integer (-W))  denotes the principal value. 

Lemma 1 

Form>0, Imf(t) - ^ j  (t - T)"'1^) dT (104) 
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where 

:-/ r(m)   -  (m-1):  -   I     e^z^dz     . (105) 

Proof:     Let 

•/•• (t  -  1)m-le-imdl (106) 

and   let UU =  re       where  r =   |ll)|   and  8  = arg U).     We   introduce  the  change 

of variable T  =  t +  z/iU) in  (106).     Then 

i(6  - TT/2) ooe 

/ 

-iwt 
I = -^  e'zZ

m-hz 
(-iw)       0 

For I U)>0,0<8<TT and - TT/2 < 9 - TT/2 < rr/2 .  For values of 
m 

9 - n/2 in this interval it is easy to show that the path of 

integration in (107) can be rotated to the positive real axis (i.e. the 

integral over the arc at infinity vanishes). Hence 

I =   (-iUU)~ViU,tT(m)   . (108) 

Thus 
z 

m /(t - T)ra"lf(T)dT = fW /a(u,) IdU} 

-m   ....   -iwt -1 (-iuu)    a(u))e        duu - I f(t) m 

(109) 
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Lemma 2 
I I - I ,   . (110) 
n m   n+m 

proof:  From (103), the Fourier transform of the function I f(t) is 
m 

(-i(JU)"ma(UJ) . Hence from (103) 

I Cl f(t)] =  (-iUj)~n(-iU»"ma(U))e"iU,t dlA) = I  f(t) . 
n  m      J n+m 

(111) 
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